Langevin Approach to Lévy Flights in Fixed Potentials: Exact Results for Stationary Probability Distributions ∗

نویسندگان

  • Alexander Dubkov
  • Bernardo Spagnolo
چکیده

The functional method to derive the fractional Fokker-Planck equation for probability distribution from the Langevin equation with Lévy stable noise is proposed. For the Cauchy stable noise we obtain the exact stationary probability density function of Lévy flights in different smooth potential profiles. We find confinement of the particle in the superdiffusion motion with a bimodal stationary distribution for all the anharmonic symmetric monostable potentials investigated. The stationary probability density functions show power-law tails, which ensure finiteness of the variance. By reviewing recent results on these statistical characteristics, the peculiarities of Lévy flights in comparison with ordinary Brownian motion are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lévy flights and Lévy-Schrödinger semigroups

We analyze two different confining mechanisms for Lévy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Lévy-Schrödinger semigroups which induce so-called topological Lévy processes (Lévy flights with locally modified jump rates in the master equation). Given a stationary probability func...

متن کامل

2 2 Ju n 20 09 Lévy flights in confining potentials

We analyze confining mechanisms for Lévy flights. When they evolve in suitable external potentials their variance may exist and show signatures of a superdiffusive transport. Two classes of stochastic jump type processes are considered: those driven by Langevin equation with Lévy noise and those, named by us topological Lévy processes (occurring in systems with topological complexity like folde...

متن کامل

Generalized Langevin equations: Anomalous diffusion and probability distributions.

We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the positi...

متن کامل

The Symmetric Stable Lévy Flights and the Feynman Path Integral

We determine the solution of the fractional spatial diffusion equation in n-dimensional Euclidean space for a “free” particle by computing the corresponding propagator. We employ both the Hamiltonian and Lagrangian approaches which produce exact results for the case of jumps governed by symmetric stable Lévy flights.

متن کامل

Exact asymptotics for a Lévy-driven tandem queue with an intermediate input

We consider a Lévy-driven tandem queue with an intermediate input assuming that its buffer content process obtained by a reflection mapping has the stationary distribution. For this queue, no closed form formula is known, not only for its distribution but also for the corresponding transform. In this paper we consider only light-tailed inputs, and derive exact asymptotics for the tail distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008